Roles of larval sea urchin spicule SM50 domains in organic matrix self-assembly and calcium carbonate mineralization.

نویسندگان

  • Ashit Rao
  • Jong Seto
  • John K Berg
  • Stefan G Kreft
  • Martin Scheffner
  • Helmut Cölfen
چکیده

The larval spicule matrix protein SM50 is the most abundant occluded matrix protein present in the mineralized larval sea urchin spicule. Recent evidence implicates SM50 in the stabilization of amorphous calcium carbonate (ACC). Here, we investigate the molecular interactions of SM50 and CaCO3 by investigating the function of three major domains of SM50 as small ubiquitin-like modifier (SUMO) fusion proteins - a C-type lectin domain (CTL), a glycine rich region (GRR) and a proline rich region (PRR). Under various mineralization conditions, we find that SUMO-CTL is monomeric and influences CaCO3 mineralization, SUMO-GRR aggregates into large protein superstructures and SUMO-PRR modifies the early CaCO3 mineralization stages as well as growth. The combination of these mineralization and self-assembly properties of the major domains synergistically enable the full-length SM50 to fulfill functions of constructing the organic spicule matrix as well as performing necessary mineralization activities such as Ca(2+) ion recruitment and organization to allow for proper growth and development of the mineralized larval sea urchin spicule.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase transitions in biogenic amorphous calcium carbonate.

Crystalline biominerals do not resemble faceted crystals. Current explanations for this property involve formation via amorphous phases. Using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), here we examine forming spicules in embryos of Strongylocentrotus purpuratus sea urchins, and observe a sequence of three mineral phases: hydrated amo...

متن کامل

HpEts, an ets-related transcription factor implicated in primary mesenchyme cell differentiation in the sea urchin embryo

The mechanism of micromere specification is one of the central issues in sea urchin development. In this study we have identified a sea urchin homologue of ets 1 + 2. HpEts, which is maternally expressed ubiquitously during the cleavage stage and which expression becomes restricted to the skeletogenic primary mesenchyme cells (PMC) after the hatching blastula stage. The overexpression of HpEts ...

متن کامل

Crystallization and preliminary X-ray analysis of the C-type lectin domain of the spicule matrix protein SM50 from Strongylocentrotus purpuratus.

Sea urchin spicules have a calcitic mesocrystalline architecture that is closely associated with a matrix of proteins and amorphous minerals. The mechanism underlying spicule formation involves complex processes encompassing spatio-temporally regulated organic-inorganic interactions. C-type lectin domains are present in several spicule matrix proteins in Strongylocentrotus purpuratus, implying ...

متن کامل

Initial stages of calcium uptake and mineral deposition in sea urchin embryos.

Sea urchin larvae have an endoskeleton consisting of two calcitic spicules. We reconstructed various stages of the formation pathway of calcium carbonate from calcium ions in sea water to mineral deposition and integration into the forming spicules. Monitoring calcium uptake with the fluorescent dye calcein shows that calcium ions first penetrate the embryo and later are deposited intracellular...

متن کامل

The organic matrix of the skeletal spicule of sea urchin embryos

The micromeres that arise at the fourth cell division in developing sea urchin embryos give rise to primary mesenchyme, which in turn differentiates and produces calcareous endoskeletal spicules. These spicules have been isolated and purified from pluteus larvae by washing in combinations of ionic and nonionic detergents followed by brief exposure to sodium hypochlorite. The spicules may be dem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of structural biology

دوره 183 2  شماره 

صفحات  -

تاریخ انتشار 2013